The Dixmier-moeglin Equivalence for Twisted Homogeneous Coordinate Rings
نویسندگان
چکیده
Given a projective scheme X over a field k, an automorphism σ : X → X, and a σ-ample invertible sheaf L, one may form the twisted homogeneous coordinate ring B = B(X,L, σ), one of the most fundamental constructions in noncommutative projective algebraic geometry. We study the primitive spectrum of B, as well as that of other closely related algebras such as skew and skew-Laurent extensions of commutative algebras. Over an algebraically closed, uncountable field k of characteristic zero, we prove that that the primitive ideals of B are characterized by the usual Dixmier-Moeglin conditions whenever
منابع مشابه
A Dixmier-moeglin Equivalence for Skew Laurent Polynomial Rings
The work of Dixmier in 1977 and Moeglin in 1980 show us that for a prime ideal P in the universal enveloping algebra of a complex finite-dimensional Lie algebra the properties of being primitive, rational and locally closed in the Zariski topology are all equivalent. This equivalence is referred to as the Dixmier-Moeglin equivalence. In this thesis we will study skew Laurent polynomial rings of...
متن کاملTitles and Abstracts for the Algebra Extravaganza
Title: The Dixmier-Moeglin equivalence for D-groups Abstract: The Dixmier-Moeglin equivalence is a characterization of the primitive ideals of an algebra that holds for many classes of rings, including affine PI rings, enveloping algebras of finite-dimensional Lie algebras, and many quantum algebras. For rings satisfying this equivalence, it says that the primitive ideals are precisely those pr...
متن کاملThe Dixmier-moeglin Equivalence and a Gel’fand-kirillov Problem for Poisson Polynomial Algebras
The structure of Poisson polynomial algebras of the type obtained as semiclassical limits of quantized coordinate rings is investigated. Sufficient conditions for a rational Poisson action of a torus on such an algebra to leave only finitely many Poisson prime ideals invariant are obtained. Combined with previous work of the first-named author, this establishes the Poisson Dixmier-Moeglin equiv...
متن کامل2 4 M ay 2 00 7 THE DIXMIER - MOEGLIN EQUIVALENCE AND A GEL ’ FAND - KIRILLOV PROBLEM FOR POISSON POLYNOMIAL ALGEBRAS
The structure of Poisson polynomial algebras of the type obtained as semiclas-sical limits of quantized coordinate rings is investigated. Sufficient conditions for a rational Poisson action of a torus on such an algebra to leave only finitely many Poisson prime ideals invariant are obtained. Combined with previous work of the first-named author, this establishes the Poisson Dixmier-Moeglin equi...
متن کاملThe Dixmier - Moeglin Equivalence in Quantumcoordinate Rings and Quantized Weyl
We study prime and primitive ideals in a uniied setting applicable to quanti-zations (at nonroots of unity) of n n matrices, of Weyl algebras, and of Euclidean and symplectic spaces. The framework for this analysis is based upon certain iterated skew polynomial algebras A over innnite elds k of arbitrary characteristic. Our main result is the veriication, for A, of a characterization of primiti...
متن کامل